99 research outputs found

    Benchmarking machine learning models on multi-centre eICU critical care dataset

    Get PDF
    Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and public benchmarks. Recent availability of large clinical datasets has enabled the possibility of establishing public benchmarks. Taking advantage of this opportunity, we propose a public benchmark suite to address four areas of critical care, namely mortality prediction, estimation of length of stay, patient phenotyping and risk of decompensation. We define each task and compare the performance of both clinical models as well as baseline and deep learning models using eICU critical care dataset of around 73,000 patients. This is the first public benchmark on a multi-centre critical care dataset, comparing the performance of clinical gold standard with our predictive model. We also investigate the impact of numerical variables as well as handling of categorical variables on each of the defined tasks. The source code, detailing our methods and experiments is publicly available such that anyone can replicate our results and build upon our work.Comment: Source code to replicate the results https://github.com/mostafaalishahi/eICU_Benchmar

    Smartphone apps usage patterns as a predictor of perceived stress levels at workplace

    Full text link
    Explosion of number of smartphone apps and their diversity has created a fertile ground to study behaviour of smartphone users. Patterns of app usage, specifically types of apps and their duration are influenced by the state of the user and this information can be correlated with the self-reported state of the users. The work in this paper is along the line of understanding patterns of app usage and investigating relationship of these patterns with the perceived stress level within the workplace context. Our results show that using a subject-centric behaviour model we can predict stress levels based on smartphone app usage. The results we have achieved, of average accuracy of 75% and precision of 85.7%, can be used as an indicator of overall stress levels in work environments and in turn inform stress reduction organisational policies, especially when considering interrelation between stress and productivity of workers

    Automatic Stress Detection in Working Environments from Smartphones' Accelerometer Data: A First Step

    Full text link
    Increase in workload across many organisations and consequent increase in occupational stress is negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of self- reporting and variability between and within individuals. With the advent of smartphones it is now possible to monitor diverse aspects of human behaviour, including objectively measured behaviour related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behaviour that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (in comparison to location, video or audio recording, for example) and because its low power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. 30 subjects from two different organizations were provided with smartphones. The study lasted for 8 weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify self reported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer.Comment: in IEEE Journal of Biomedical and Health Informatics, 201

    Investigation of indoor localization with ambient FM radio stations

    Full text link
    Localization plays an essential role in many ubiquitous computing applications. While the outdoor location-aware services based on GPS are becoming increasingly popular, their proliferation to indoor environments is limited due to the lack of widely available indoor localization systems. The de-facto standard for indoor positioning is based on Wi-Fi and while other localization alternatives exist, they either require expensive hardware or provide a low accuracy. This paper presents an investigation into localization system that leverages signals of broadcasting FM radio stations. The FM stations provide a worldwide coverage, while FM tuners are readily available in many mobile devices. The experimental results show that FM radio can be used for indoor localization, while providing longer battery life than Wi-Fi, making FM an alternative to consider for positioning.Comment: 10th IEEE Pervasive Computing and Communication conference, PerCom 2012, pp. 171 - 17

    Automatic Sensing of Speech Activity and Correlation with Mood Changes

    Get PDF
    he association between social relationships and psychological health has been established fairly recently, in the last 30-40 years, relying on survey-based methods to record past activities and the psychological responses in individuals. However, using the self-reporting methods for capturing social behavior exhibits a number of shortcomings including recall bias, memory dependence, and a high end user effort for a continuous long-term monitoring. In contrast, automated sensing techniques for monitoring social activity, and in general, human behavior, has a potential to provide more objective measurements thus to overcome the shortcomings of self-reporting methods. In this paper, we present a privacy preserving approach to detect one component of social interactions - the speech activity, through the use of off-the-shelf accelerometers. Furthermore, we used the accelerometer based speech detection method to investigate the correlation between the amount of speech (which is an aspect that reflects the participation in verbal social interactions) and mood changes. Our pilot study suggested that verbal interactions are an important factor that has an impact on individuals’ mood, while the study also demonstrated the potential of automated capturing social activity comparable to the use of gold standard surveys

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    Context Management Support for Activity Recognition in Health-Care

    Get PDF
    (The original publication is available at http://www.springerlink.com/

    Enabling Prescription-based Health Apps

    Full text link
    We describe an innovative framework for prescription of personalised health apps by integrating Personal Health Records (PHR) with disease-specific mobile applications for managing medical conditions and the communication with clinical professionals. The prescribed apps record multiple variables including medical history enriched with innovative features such as integration with medical monitoring devices and wellbeing trackers to provide patients and clinicians with a personalised support on disease management. Our framework is based on an existing PHR ecosystem called TreC, uniquely positioned between healthcare provider and the patients, which is being used by over 70.000 patients in Trentino region in Northern Italy. We also describe three important aspects of health app prescription and how medical information is automatically encoded through the TreC framework and is prescribed as a personalised app, ready to be installed in the patients' smartphone

    Mitigating Health Data Poverty: Generative Approaches versus Resampling for Time-series Clinical Data

    Get PDF
    Several approaches have been developed to mitigate algorithmic bias stemming from health data poverty, where minority groups are underrepresented in training datasets. Augmenting the minority class using resampling (such as SMOTE) is a widely used approach due to the simplicity of the algorithms. However, these algorithms decrease data variability and may introduce correlations between samples, giving rise to generative approaches based on GAN. Generation of high-dimensional, time-series, authentic data that provide a wide distribution coverage of the real data, remains a challenging task for both resampling and GAN-based approaches. In this work we propose CA-GAN architecture that addresses some of the shortcomings of the current approaches, where we provide a detailed comparison with both SMOTE and WGAN-GP, using a high-dimensional, time-series, real dataset of 3343 hypotensive Caucasian and Black patients. We show that our approach is better at both generating authentic data of the minority class and remaining within the original distribution of the real data
    • …
    corecore